Meade LS 8" ACF (f/10) Advanced Coma-Free with UHTC Telescope


Features:
  • LightSwitch™ series of telescopes use advanced technologies like GPS, LNT™ and ECLIPS™ CCD imaging
  • With the flip of a switch, LS automatically aligns itself,
  • Advanced Coma-Free Optics Meade’s exciting optical innovation delivers stunning performance
  • Light-weight, portable aluminum mount










For this and more Meade Telescopes CLICK HERE

This item comes with free shipping and normally Ships in 1 to 3 business days






Meade ® Ultra-High Transmission coatings



Meade ® Ultra-High Transmission coatings (UHTC) Group


An important optional feature to optimize the performance of your Meade telescope.
Image brightness in a telescope is crucially dependent on the reflectivity of the telescope's mirrors and on the transmission of its lenses. Neither of these processes, mirror-reflectivity or lens-transmission, is, however, perfect; light loss occurs in each instance where light is reflected or transmitted. Uncoated glass, for example, reflects about 4% of the light impacting it; in the case of an uncoated lens 4% of the light is lost at entrance toand at exit from the lens, for a total light loss of about 8%.
Early reflecting telescopes of the 1700's and 1800's suffered greatly from mirrors of poor reflectivity — reflection losses of 50% or more were not uncommon. Later, silvered mirrors improved reflectivity, but at high cost and with poor durability. Modern optical coatings have succeeded in reducing mirror-reflection and lens-transmission losses to acceptable levels at reasonable cost.
Light Diagram
Meade Standard Coatings: The optical surfaces of all Meade telescopes include high-grade optical coatings fully consistent in quality with the precision of the optical surfaces themselves. These standard-equipment coatings include mirror surfaces of highly purified aluminum, vacuum-deposited at high temperature and overcoated with silicon monoxide (SiO), and correcting lenses coated on both sides for high light transmission with magnesium fluoride (MgF2). Meade standard mirror and lens coatings equal or exceed the reflectivity and transmission, respectively, of virtually any optical coatings currently offered in the commercial telescope industry.
The Meade UHTC Group: Technologies recently developed at the Meade Irvine coatings facility, however, including installation of some of the largest and most advanced vacuum coating instrumentation currently available, have permitted the vacuum-deposition of a series of exotic optical coatings precisely tuned to optimize the visual, photographic, and CCD imaging performance of Meade telescopes. These specialized, and extremely advantageous, coatings are offered here as the Meade Ultra-High Transmission Coatings (UHTC) group, a coatings group available optionally on many Meade telescope models.
In Meade catadioptric, or mirror-lens, telescopes (including the ETX-90AT, ETX-105AT, and ETX-125AT; LX10, LX90, and LX200GPS Schmidt-Cassegrains; and LXD55-Series Schmidt-Newtonians) before incoming light is brought to a focus, it passes through, or is
reflected by, four optical surfaces: the front surface of the correcting lens, the rear surface of the correcting lens, the primary mirror, and the secondary mirror. Each of these four surfaces results in some loss of light, with the level of loss being dependent on the chemistry of each surface's optical coatings and on the wavelength of light. (Standard aluminum mirror coatings, for example, typically have their highest reflectivity in the yellow region of the visual spectrum, at a wavelength of about 580nm.)
Mirror Coatings: Meade ETX, Schmidt-Cassegrain, and Schmidt-Newtonian telescopes equipped with the Ultra-High Transmission Coatings group include primary and secondary mirrors coated with aluminum enhanced with a complex stack of multi-layer coatings of titanium dioxide (TiO2) and silicon dioxide (SiO2). The thickness of each coating layer is precisely controlled to within 1% of optimal thickness. The result is a dramatic increase in mirror reflectivity across the entire visible spectrum.
Correcting Lens Coatings: Meade telescopes ordered with the UHTC group include, in addition, an exotic and tightly-controlled series of coatings on both sides of the correcting lens or correcting plate, coatings which include multiple layers of aluminum oxide (Al2O3), titanium dioxide (TiO2), and
UHTC label
magnesium fluoride (MgF2). Per-surface light transmission of the correcting lens is thereby increased at the yellow wavelength of 580nm., for example, to 99.8%, versus a per-surface transmission of 98.7% for the standard coating.
The importance of the UHTC group becomes apparent when comparing total telescope light transmission, or throughput, caused by the multiplier, or compounding, effect of the four optical surfaces. With each optical surface contributing significantly to telescope light throughput, the effect of all four surfaces
combined is indeed dramatic, as demonstrated by the graphs on the facing page, as well as by the table of the brightest nebular emission lines. At the H-a wavelength of 656nm., total transmission increases from 76.7% to 88.5%, an increase of 15.4%; at the helium wavelengths of 588nm. and 469nm. — strong emission lines in hot planetary nebulae — total telescope transmission increases by 13.8% and 16.8%, respectively; at the
UHTC vacuum coater
two nitrogen II lines of 655nm. and 658nm. and at the sulfur II line of 673nm., transmission is increased by 16%. Averaged over the entire visible spectrum (450nm. to 700nm.), total light transmission to the telescope focus increases by about 15%.
Observing with the UHTC: Meade ETX, Schmidt-Cassegrain, and Schmidt-Newtonian telescopes equipped with the UHTC present dramatically brighter images on the full range of celestial objects — from emission and planetary nebulae such as M8, M20, and M57 to star clusters and galaxies such as M3, M13, and M101. Observations of the Moon and planets, since they are observed in reflected (white) sunlight, benefit in image brightness from the full spectrum of increased transmission.

Emission LineWavelength
(nm.)
Transmission: Standard
Coating (%)
Transmission: UHTC
Group (%)
Increase*
Hydrogen-alpha (Ha)65676.788.4615.33%
Hydrogen-beta (Hb)48676.889.2216.17%
Oxygen III49677.689.7815.7%
Oxygen III50177.988.9815.51%
Helium II4697587.6316.84%
Helium I58879.290.113.76%
Nitrogen II65576.788.515.38%
Nitrogen II65876.688.3915.39%
Sulfur II67375.787.7915.97%
* The % increase is obtained by dividing the UHTC-transmission (column 4) by the standard coatings transmission (column 3).
The overall effect of the UHTC is, as it relates to image brightness, to increase the telescope's effective aperture.Image brightness of the Meade 10" LX200GPS is, for example, effectively increased by about 0.75 inch of aperture.
UHTC vs. Standard Meade Coatings
UHTC Coatings,Ultra High Transmission Coatings,Special Coatings,Telescopes,Optical Coatings,Optics,Illumination,Coatings,Astrophotography,Optics And Light,Meade,Mead,Meade ETX,Visual Imagery,LPI Imager,Meade Lx200Gps,LXD55 Telescopes,Planets,Stars,Astronomy,Moons,Solar Systems,Saturn,Constellations,Space Imagery




Copyright © 2006 Meade Instruments Corporation, All Rights Reserved.
This material may not be reproduced in any form without permission.












Meade Instruments - An overview

Meade Instruments Corporation (aka Meade) is a multinational company headquartered in Irvine, California, that manufactures, imports, and distributes telescopes, binoculars, spotting scopes, microscopes, CCD cameras and telescope accessories for the consumer market. It is the world's largest manufacturer of telescopes. Besides selling under its "Meade" brand name, the company sells solar telescopes under the Coronado name. Its products are also imported and sold in Europe by a former subsidiary under the Meade and Coronado brand names
Products
A 40 cm Meade LX200 in the York University Observatory
Meade manufactured its products formerly in Irvine, California, and currently in an expanded plant in Tijuana, Mexico.Products produced by Meade include
Catadioptric cassegrains
ACF Telescopes
ACF (Advanced Coma-Free) is an altered version of the Meade's previous schmidt-cassegrain telescopes that substitutes the tradition spherical schmidt-cassegrain secondary mirror with a hyperbolic secondary. In the new design the full aperture corrector is slightly altered in shape and combined with a spherical primary mirror. Meade's literature originally describe their ACF as a variation on the Ritchey-Chrétien telescope, although it does not use the two hyperbolic mirror combination in that design (being more of an aplantic design). After a legal settlement Meade dropped the claim.
Models
  • LX90-ACF, 8" to 12"
  • LX200-ACF, a series of LX200 with ACF Optics 8" to 16"
  • LX400-ACF, 16 to 20" f/8, w/ robotic equatorial mount
Maksutov telescopes
The Meade "ETX" series Maksutov-Cassegrain telescope (105mm aperture).
Meade currently produces a line of Maksutov telescopes under their ETX series (Everybody's Telescope). They were first produced in 90 mm (3-1/2") Maksutov Cassegrain telescope in 1996. They range in size from 90 mm to 125 mm.
Newtonian telescopes
GoTo telescopes
Many Meade telescope lines are classified by the self aiming computerized alt-azimuth and equatorial mounts they come on, a technology commonly called a "GoTo" mount.
models
  • LXD75, including Newtonian, Schmidt-Newtonian, Advanced Coma-Free, and achromatic refractor telescopes
  • ETX-LS, a 150mm (6 in) F/10 ACF telescope on a single-fork arm.
  • DS-2000 Series, 80mm (3.1") refractor, 114mm (4.5") and 130mm (5.1") reflector on altazimuth Goto mounts
Solar telescopes
In 2004, Meade acquired Coronado Filters from founder and designer David Lunt, who produce an extensive range of specialty telescopes that allow views of the sun in Hydrogen-Alpha, and formerly, at Calcium K line wavelengths. The Meade Coronado telescopes are called "Solarmax 40" or higher depending on the model.
Coronado Personal Solar Telescope
Other products
  • Achromatic Refractors (5 and 6-inch)
  • Meade also sells under the "Meade" name imported low to moderate cost reflectors and refractors intended for the beginner retail market.
Telescope accessories
Accessories produced by Meade include the series 5000 eyepieces that are comparable in construction to those of Chester, New York-based Tele VueOptical's "Nagler" (82-degree field of view), "Panoptic" (68-degree field of view), and "Radian" (60-degree field of view) eyepieces. Meade sells Deep Sky and Lunar digital imagers for telescopes. They also market the mySKY & mySKY Plus, multi-media GPS devices guiding users to the sky, similar to the competing Celestron SkyScout.
From Wikipedia, the free encyclopedia